Numerical Investigation on Load-carrying Capacity of High-strength Concrete-encased Steel Angle Columns

Chang-Soo Kim¹⁾, and Hyeon-Jong Hwang^{2),*}

(Received January 14, 2017, Accepted January 7, 2018)

composite columns by maximizing the contribution of high-

are defined as a function of the equivalent uniform lateral confining pressure

 $s_{bl} = local \ buckling \ length \ (assumed \ to \ be \ the \ vertical \ spacing \ \ \ \ s_t$

correspond to b_s $\;t_s=120-15,\ 150-12,\ and\ 175-10$ mm) of steel angles, yield strength ($f_{yt}=315,\ 450,\ and\ 650$ MPa), thickness (b_t $\;t_t=100-10,\ 100-12,\ and\ 100-15$ mm), and spacing ($s_t/b_c=0.3,\ 0.5,\ and\ 1$

Eq. (7), and f_{bs} ¼ f_{ys} in Eq. (5)) can be rewritten as Eq. (13): e_{bs} ¼ e_{bs1} if e_{bs1} e_{ys} , or e_{bs} ¼ e_{bs2} if e_{bs1} [e_{ys} .

$$e_{bs1} \not\stackrel{1}{\sim} \frac{k_b p^2}{12 \delta 1 - 0.3^2 \flat} \quad \frac{t_s}{}$$

- 1-1: General rules and rules for buildings. Brussels: Eurocode $4.\,$
- European Committee for Standardization (CEN). (2008). Design of concrete structures-part 1-1: General rules and rules for buildings. Brussels: Eurocode 2.
- Garzon-Roca, J., Adam, J. M., & Calderon, P. A. (2011a). Behaviour of RC columns strengthened by steel caging under combined bending and axial loads. Construction and Building Materials, 25(5), 2402–2412.
- Garzon-Roca, J., Adam, J. M., Calderon, P. A., & Valente, I. B.

- Westergaard, H. M., & Osgood, W. R. (1928). Strength of steel columns. Trans. ASME, 50, 65–80.
- Winter, G. (1947). Strength of thin steel compression flanges. Transactions of the American Society of Civil Engineers, 112(1), 527–554.
- Zheng, W. Z., & Ji, J. (2008a). Dynamic performance of anglesteel concrete columns under low cyclic loading I: Experimental study. Earthquake Engineering and Engineering Vibration, 7, 67–75.